Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(22): 227201, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36493423

RESUMO

Investigation of dynamical excitations is difficult but crucial to the understanding of many exotic quantum phenomena discovered in quantum materials. This is particularly true for highly frustrated quantum antiferromagnets whose dynamical properties deviate strongly from theoretical predictions made based on the spin-wave or other approximations. Here, we present a large-scale numerical calculation on the dynamical correlation functions of spin-1/2 triangular Heisenberg model using a state-of-the-art tensor network renormalization group method. The calculated results allow us to gain for the first time a comprehensive picture on the nature of spin excitation spectra in this highly frustrated quantum system. It provides a quantitative account for all the key features of the dynamical spectra disclosed by inelastic neutron scattering measurements for Ba_{3}CoSb_{2}O_{9}, revealing the importance of the interplay between low- and high-energy excitations and its renormalization effect to the low-energy magnon bands and high-energy continuums. We identify the longitudinal Higgs modes in the intermediate-energy scale and predict the energy and momentum dependence of spectral functions along the three principal axes that can be verified by polarized neutron scattering experiments. Furthermore, we find that the spin excitation spectra weakly depend on the anisotropic ratio of the antiferromagnetic interaction.


Assuntos
Nêutrons , Anisotropia , Movimento (Física)
2.
J Phys Condens Matter ; 33(47)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34438384

RESUMO

We study the entanglement properties of non-Hermitian free fermionic models with translation symmetry using the correlation matrix technique. Our results show that the entanglement entropy has a logarithmic correction to the area law in both one-dimensional and two-dimensional systems. For any one-dimensional one-band system, we prove that each Fermi point of the system contributes exactly 1/2 to the coefficientcof the logarithmic correction. Moreover, this relation betweencand Fermi point is verified for more general one-dimensional and two-dimensional cases by numerical calculations and finite-size scaling analysis. In addition, we also study the single-particle and density-density correlation functions.

3.
Phys Rev E ; 101(6-1): 060105, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688489

RESUMO

We perform the state-of-the-art tensor network simulations directly in the thermodynamic limit to clarify the critical properties of the q-state clock model on the square lattice. We determine accurately the two phase transition temperatures through the singularity of the classical analog of the entanglement entropy, and provide extensive numerical evidences to show that both transitions are of the Berezinskii-Kosterlitz-Thouless (BKT) type for q≥5 and that the low-energy physics of this model is well described by the Z_{q}-deformed sine-Gordon theory. We also determine the characteristic conformal parameters, especially the compactification radius, that govern the critical properties of the intermediate BKT phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...